

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

All Notable changes to laravel-permission-mongodb will be documented in this file.

5.0.0-alpha - 2022-07-01

Added

	Support of PHP 8.0

	Update Relations between models

4.0.0 - 2022-05-15

Added

	Support of Laravel 9.x

	Added some return toward PHP 8 transitioning to require return types

	Use of DatabaseMigration and Seeder in tests

	Fix some tests (api guard is no more in auth.php by default)

3.1.0 - 2020-10-04

Added

	Support of Laravel 8.x

3.0.0 - 2020-09-27

Added

	Support of Laravel 7.x

2.0.1 - 2020-02-23

Changed

	Defer registering permissions on the Gate instance until it’s resolved

2.0.0 - 2020-02-20

Added

	Support of Laravel 6.x

1.10.1 - 2018-09-16

Fixed

	Fix test coverage

1.10.0 - 2018-09-15

Added

	Add migration files

Changed

	Update PermissionRegistrar to use Authorizable

	Improve readme description of how defaults work with multiple guards

	Replacing static Permission::class and Role::class with dynamic value

	Improve speed of findByName

1.9.0 - 2018-09-14

Fixed

	Fix wrong BelongsTo relationship

	Config cleanup

	Fixes for Lumen 5.6 compatibility

	Fix classes resolution to config values

	Fix permissions via roles

	Fixed detection of Lumen

Added

	Add scrutinizer code intelligence

Changed

	Loose typing definitions for BelongsToMany

1.8.2 - 2018-08-14

Changed

	Exclude yml files from export

1.8.1 - 2018-06-24

Changed

	Move permission functionality from HasRoles Trait to HasPermissions Trait

1.8.0 - 2018-04-15

Added

	Allow assign/sync/remove Roles from Permission model

1.7.1 - 2018-04-09

Added

	Allow missing guard driver param (Spark compatibility)

1.7.0 - 2018-03-21

Added

	Support getting guard_name from extended model

	Add required permissions and roles in exception object

	Add the option to hide and show permissions in exceptions

1.6.0 - 2018-02-17

Added

	Officially support laravel 5.6

	Improve Lumen support

1.5.3 - 2018-02-07

Added

	add findOrCreate to Permissions

	add findOrCreate to Roles

Fixed

	use sync([]) instead of detach()

	fix soft deleting in laravel 5.2 and 5.3

1.5.2 - 2018-01-25

Added

	Added multiple Revoke Permissions

	Added multiple Remove Roles

	Remove SensioLabsInsight badge

1.5.1 - 2018-01-22

Added

	Added Lumen support

1.5.0 - 2018-01-08

Added

	Handle Http Exceptions as Unauthorized Exception

1.4.0 - 2018-01-01

Added

	Officially Support laravel 5.5

1.3.5 - 2017-10-18

Added

	Give Permissions to roles in Command Line

Fixed

	Fixed a bug where Roles and Permissions got detached when soft deleting a model

1.3.4 - 2017-09-28

Added

	Add the support of laravel 5.2

1.3.3 - 2017-09-27

Added

	Add the support of laravel 5.3

1.4.0-alpha - 2017-09-19

Added

	Add the support of laravel 5.5

1.3.2 - 2017-09-12

Removed

	Remove the support of laravel 5.5 till jenssegers/laravel-mongodb supports it

1.3.1 - 2017-09-11

Added

	Add convertToRoleModels and convertToPermissionModels

Fixed

	Register Blade extensions

1.3.0 - 2017-09-09

Added

	Added permission scope to HasRoles trait

	Update dependencies

Changed

	Register Blade extensions in boot instead of register

1.2.2 - 2017-09-07

Fixed

	Recreate Exceptions

	Fix most PHP Code Sniffer errors

	Fix some PHP Mess Detector errors

1.2.1 - 2017-09-05

Added

	Let middleware use caching

	Allow logging while exceptions

1.2.0 - 2017-09-03

Added

	Add getRoleNames() method to return a collection of assigned roles

	Add getPermissionNames() method to return a collection of all assigned permissions

1.1.0 - 2017-09-01

Added

	Adding support of Laravel 5.5

Fixed

	Remove the role and permission relation when delete user

	Code quality enhancements

1.0.0 - 2017-08-21

Added

	Everything, initial release

 MIT License

Copyright (c) 2017 Mostafa Abd El-Salam Maklad

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

laravel-permission-mongodb

[image: https://img.shields.io/packagist/v/mostafamaklad/laravel-permission-mongodb.svg?style=flat-square]Latest Version on Packagist

[image: https://img.shields.io/travis/mostafamaklad/laravel-permission-mongodb/master.svg?style=flat-square]Build Status [https://travis-ci.org/mostafamaklad/laravel-permission-mongodb]
[image: https://img.shields.io/scrutinizer/g/mostafamaklad/laravel-permission-mongodb.svg?style=flat-square]Scrutinizer [https://scrutinizer-ci.com/g/mostafamaklad/laravel-permission-mongodb]
[image: https://api.codeclimate.com/v1/badges/005c3644a2db6b364514/maintainability]Maintainability [https://codeclimate.com/github/mostafamaklad/laravel-permission-mongodb/maintainability]
[image: https://api.codacy.com/project/badge/Grade/11620283b18945e2beb77e59ddc90624]Codacy Badge [https://www.codacy.com/app/mostafamaklad/laravel-permission-mongodb?utm_source=github.com&utm_medium=referral&utm_content=mostafamaklad/laravel-permission-mongodb&utm_campaign=Badge_Grade]
[image: https://styleci.io/repos/100894062/shield?style=flat-square]StyleCI [https://styleci.io/repos/100894062]
[image: https://img.shields.io/coveralls/mostafamaklad/laravel-permission-mongodb.svg?style=flat-square]Coverage Status [https://coveralls.io/github/mostafamaklad/laravel-permission-mongodb]
[image: https://img.shields.io/packagist/dt/mostafamaklad/laravel-permission-mongodb.svg?style=flat-square]Total Downloads [https://packagist.org/packages/mostafamaklad/laravel-permission-mongodb]

This package allows you to manage user permissions and roles in a database.
It is inspired from laravel-permission [https://github.com/spatie/laravel-permission]. Same code same every thing but it is compatible with laravel-mongodb [https://github.com/jenssegers/laravel-mongodb]

Once installed you can do stuff like this:

// Adding permissions to a user
$user->givePermissionTo('edit articles');

// Adding permissions via a role
$user->assignRole('writer');

$role->givePermissionTo('edit articles');

If you’re using multiple guards we’ve got you covered as well. Every guard will have its own set of permissions and roles that can be assigned to the guard’s users. Read about it in the using multiple guards section of the readme.

Because all permissions will be registered on Laravel’s gate [https://laravel.com/docs/5.5/authorization], you can test if a user has a permission with Laravel’s default can function:

$user->can('edit articles');

Table of contents

	Installation

	Laravel Compatibility

	Laravel

	Lumen

	Usage

	Using “direct” permissions

	Using permissions via roles

	Using Blade directives

	Using multiple guards

	Using permissions and roles with multiple guards

	Assigning permissions and roles to guard users

	Using blade directives with multiple guards

	Using a middleware

	Using artisan commands

	Unit Testing

	Database Seeding

	Extending

	Cache

	Manual cache reset

	Cache Identifier

	Need a UI?

	Change log

	Testing

	Contributing

	Security

	Credits

	License

Installation

Laravel Compatibility

Laravel | Package
:———|:———-
5.x | 1.x or 2.x or 3.x
6.x | 2.x or 3.x
7.x | 3.x
8.x | 3.1.x
9.x | 4.x

Laravel

You can install the package via composer:

For laravel 9.x use

composer require mostafamaklad/laravel-permission-mongodb

For laravel 8.x and older use

composer require mostafamaklad/laravel-permission-mongodb:"^3.1"

You can publish the migration with:

php artisan vendor:publish --provider="Maklad\Permission\PermissionServiceProvider" --tag="migrations"

php artisan migrate

You can publish the config file with:

php artisan vendor:publish --provider="Maklad\Permission\PermissionServiceProvider" --tag="config"

When published, the config/permission.php config file contains:

return [

 'models' => [

 /*
 * When using the "HasRoles" trait from this package, we need to know which
 * Moloquent model should be used to retrieve your permissions. Of course, it
 * is often just the "Permission" model but you may use whatever you like.
 *
 * The model you want to use as a Permission model needs to implement the
 * `Maklad\Permission\Contracts\Permission` contract.
 */

 'permission' => Maklad\Permission\Models\Permission::class,

 /*
 * When using the "HasRoles" trait from this package, we need to know which
 * Moloquent model should be used to retrieve your roles. Of course, it
 * is often just the "Role" model but you may use whatever you like.
 *
 * The model you want to use as a Role model needs to implement the
 * `Maklad\Permission\Contracts\Role` contract.
 */

 'role' => Maklad\Permission\Models\Role::class,

],

 'collection_names' => [

 /*
 * When using the "HasRoles" trait from this package, we need to know which
 * table should be used to retrieve your roles. We have chosen a basic
 * default value but you may easily change it to any table you like.
 */

 'roles' => 'roles',

 /*
 * When using the "HasRoles" trait from this package, we need to know which
 * table should be used to retrieve your permissions. We have chosen a basic
 * default value but you may easily change it to any table you like.
 */

 'permissions' => 'permissions',
],

 /*
 * By default all permissions will be cached for 24 hours unless a permission or
 * role is updated. Then the cache will be flushed immediately.
 */

 'cache_expiration_time' => 60 * 24,

 /*
 * By default we'll make an entry in the application log when the permissions
 * could not be loaded. Normally this only occurs while installing the packages.
 *
 * If for some reason you want to disable that logging, set this value to false.
 */

 'log_registration_exception' => true,

 /*
 * When set to true, the required permission/role names are added to the exception
 * message. This could be considered an information leak in some contexts, so
 * the default setting is false here for optimum safety.
 */

 'display_permission_in_exception' => false,
];

Lumen

You can install the package via Composer:

composer require mostafamaklad/laravel-permission-mongodb

Copy the required files:

cp vendor/mostafamaklad/laravel-permission-mongodb/config/permission.php config/permission.php
cp vendor/mostafamaklad/laravel-permission-mongodb/database/migrations/create_permission_collections.php.stub database/migrations/2018_01_01_000000_create_permission_collections.php

You will also need to create another configuration file at config/auth.php. Get it on the Laravel repository or just run the following command:

curl -Ls https://raw.githubusercontent.com/laravel/lumen-framework/5.5/config/auth.php -o config/auth.php

Then, in bootstrap/app.php, register the middlewares:

$app->routeMiddleware([
 'auth' => App\Http\Middleware\Authenticate::class,
 'permission' => Maklad\Permission\Middlewares\PermissionMiddleware::class,
 'role' => Maklad\Permission\Middlewares\RoleMiddleware::class,
]);

As well as the configuration and the service provider:

$app->configure('permission');
$app->register(Maklad\Permission\PermissionServiceProvider::class);

Now, run your migrations:

php artisan migrate

Usage

First, add the Maklad\Permission\Traits\HasRoles trait to your User model(s):

use Illuminate\Auth\Authenticatable;
use Jenssegers\Mongodb\Eloquent\Model as Model;
use Illuminate\Foundation\Auth\Access\Authorizable;
use Illuminate\Contracts\Auth\Authenticatable as AuthenticatableContract;
use Illuminate\Contracts\Auth\Access\Authorizable as AuthorizableContract;
use Maklad\Permission\Traits\HasRoles;

class User extends Model implements AuthenticatableContract, AuthorizableContract
{
 use Authenticatable, Authorizable, HasRoles;

 // ...
}

Note: that if you need to use HasRoles trait with another model ex.Page you will also need to add protected $guard_name = 'web'; as well to that model or you would get an error

use Jenssegers\Mongodb\Eloquent\Model as Model;
use Maklad\Permission\Traits\HasRoles;

class Page extends Model
{
 use HasRoles;

 protected $guard_name = 'web'; // or whatever guard you want to use

 // ...
}

This package allows for users to be associated with permissions and roles. Every role is associated with multiple permissions.
A Role and a Permission are regular Moloquent models. They require a name and can be created like this:

use Maklad\Permission\Models\Role;
use Maklad\Permission\Models\Permission;

$role = Role::create(['name' => 'writer']);
$permission = Permission::create(['name' => 'edit articles']);

A permission can be assigned to a role using 1 of these methods:

$role->givePermissionTo($permission);
$permission->assignRole($role);

Multiple permissions can be synced to a role using 1 of these methods:

$role->syncPermissions($permissions);
$permission->syncRoles($roles);

A permission can be removed from a role using 1 of these methods:

$role->revokePermissionTo($permission);
$permission->removeRole($role);

If you’re using multiple guards the guard_name attribute needs to be set as well. Read about it in the using multiple guards section of the readme.

The HasRoles trait adds Moloquent relationships to your models, which can be accessed directly or used as a base query:

// get a list of all permissions directly assigned to the user
$permissions = $user->permissions; // Returns a collection

// get all permissions inherited by the user via roles
$permissions = $user->getAllPermissions(); // Returns a collection

// get all permissions names
$permissions = $user->getPermissionNames(); // Returns a collection

// get a collection of all defined roles
$roles = $user->roles->pluck('name'); // Returns a collection

// get all role names
$roles = $user->getRoleNames() // Returns a collection;

The HasRoles trait also adds a role scope to your models to scope the query to certain roles or permissions:

$users = User::role('writer')->get(); // Returns only users with the role 'writer'
$users = User::permission('edit articles')->get(); // Returns only users with the permission 'edit articles'

The scope can accept a string, a \Maklad\Permission\Models\Role object, a \Maklad\Permission\Models\Permission object or an \Illuminate\Support\Collection object.

Using “direct” permissions

A permission can be given to any user with the HasRoles trait:

$user->givePermissionTo('edit articles');

// You can also give multiple permission at once
$user->givePermissionTo('edit articles', 'delete articles');

// You may also pass an array
$user->givePermissionTo(['edit articles', 'delete articles']);

A permission can be revoked from a user:

$user->revokePermissionTo('edit articles');

Or revoke & add new permissions in one go:

$user->syncPermissions(['edit articles', 'delete articles']);

You can test if a user has a permission:

$user->hasPermissionTo('edit articles');

…or if a user has multiple permissions:

$user->hasAnyPermission(['edit articles', 'publish articles', 'unpublish articles']);

Saved permissions will be registered with the Illuminate\Auth\Access\Gate class for the default guard. So you can
test if a user has a permission with Laravel’s default can function:

$user->can('edit articles');

Using permissions via roles

A role can be assigned to any user:

$user->assignRole('writer');

// You can also assign multiple roles at once
$user->assignRole('writer', 'admin');
// or as an array
$user->assignRole(['writer', 'admin']);

A role can be removed from a user:

$user->removeRole('writer');

Roles can also be synced:

// All current roles will be removed from the user and replaced by the array given
$user->syncRoles(['writer', 'admin']);

You can determine if a user has a certain role:

$user->hasRole('writer');

You can also determine if a user has any of a given list of roles:

$user->hasAnyRole(Role::all());

You can also determine if a user has all of a given list of roles:

$user->hasAllRoles(Role::all());

The assignRole, hasRole, hasAnyRole, hasAllRoles and removeRole functions can accept a
string, a \Maklad\Permission\Models\Role object or an \Illuminate\Support\Collection object.

A permission can be given to a role:

$role->givePermissionTo('edit articles');

You can determine if a role has a certain permission:

$role->hasPermissionTo('edit articles');

A permission can be revoked from a role:

$role->revokePermissionTo('edit articles');

The givePermissionTo and revokePermissionTo functions can accept a
string or a Maklad\Permission\Models\Permission object.

Permissions are inherited from roles automatically.
Additionally, individual permissions can be assigned to the user too.

For instance:

$role = Role::findByName('writer');
$role->givePermissionTo('edit articles');

$user->assignRole('writer');

$user->givePermissionTo('delete articles');

In the above example, a role is given permission to edit articles and this role is assigned to a user.
Now the user can edit articles and additionally delete articles. The permission of delete articles is the user’s direct permission because it is assigned directly to them.
When we call $user->hasDirectPermission('delete articles') it returns true, but false for $user->hasDirectPermission('edit articles').

This method is useful if one builds a form for setting permissions for roles and users in an application and wants to restrict or change inherited permissions of roles of the user, i.e. allowing to change only direct permissions of the user.

You can list all of these permissions:

// Direct permissions
$user->getDirectPermissions() // Or $user->permissions;

// Permissions inherited from the user's roles
$user->getPermissionsViaRoles();

// All permissions which apply on the user (inherited and direct)
$user->getAllPermissions();

All these responses are collections of Maklad\Permission\Models\Permission objects.

If we follow the previous example, the first response will be a collection with the delete article permission, the
second will be a collection with the edit article permission and the third will contain both.

Using Blade directives

This package also adds Blade directives to verify whether the currently logged in user has all or any of a given list of roles.

Optionally you can pass in the guard that the check will be performed on as a second argument.

Blade and Roles

Test for a specific role:

@role('writer')
 I am a writer!
@else
 I am not a writer...
@endrole

is the same as

@hasrole('writer')
 I am a writer!
@else
 I am not a writer...
@endhasrole

Test for any role in a list:

@hasanyrole(Role::all())
 I have one or more of these roles!
@else
 I have none of these roles...
@endhasanyrole
// or
@hasanyrole('writer|admin')
 I am either a writer or an admin or both!
@else
 I have none of these roles...
@endhasanyrole

Test for all roles:

@hasallroles(Role::all())
 I have all of these roles!
@else
 I do not have all of these roles...
@endhasallroles
// or
@hasallroles('writer|admin')
 I am both a writer and an admin!
@else
 I do not have all of these roles...
@endhasallroles

Blade and Permissions

This package doesn’t add any permission-specific Blade directives. Instead, use Laravel’s native @can directive to check if a user has a certain permission.

@can('edit articles')
 //
@endcan

or

@if(auth()->user()->can('edit articles') && $some_other_condition)
 //
@endif

Using multiple guards

When using the default Laravel auth configuration all of the above methods will work out of the box, no extra configuration required.

However when using multiple guards they will act like namespaces for your permissions and roles. Meaning every guard has its own set of permissions and roles that can be assigned to their user model.

Using permissions and roles with multiple guards

When creating new permissions and roles, if no guard is specified, then the first defined guard in auth.guards config array will be used. When creating permissions and roles for specific guards you’ll have to specify their guard_name on the model:

// Create a superadmin role for the admin users

$user->hasPermissionTo('publish articles', 'admin');

Note: When determining whether a role/permission is valid on a given model, it chooses the guard in this order: first the $guard_name property of the model; then the guard in the config (through a provider); then the first-defined guard in the auth.guards config array; then the auth.defaults.guard config.

Assigning permissions and roles to guard users

You can use the same methods to assign permissions and roles to users as described above in using permissions via roles. Just make sure the guard_name on the permission or role matches the guard of the user, otherwise a GuardDoesNotMatch exception will be thrown.

Using blade directives with multiple guards

You can use all of the blade directives listed in using blade directives by passing in the guard you wish to use as the second argument to the directive:

@role('super-admin', 'admin')
 I am a super-admin!
@else
 I am not a super-admin...
@endrole

Using a middleware

This package comes with RoleMiddleware and PermissionMiddleware middleware. You can add them inside your app/Http/Kernel.php file.

protected $routeMiddleware = [
 // ...
 'role' => \Maklad\Permission\Middlewares\RoleMiddleware::class,
 'permission' => \Maklad\Permission\Middlewares\PermissionMiddleware::class,
];

Then you can protect your routes using middleware rules:

Route::group(['middleware' => ['role:super-admin']], function () {
 //
});

Route::group(['middleware' => ['permission:publish articles']], function () {
 //
});

Route::group(['middleware' => ['role:super-admin','permission:publish articles']], function () {
 //
});

You can protect your controllers similarly, by setting desired middleware in the constructor:

public function __construct()
{
 $this->middleware(['role:super-admin','permission:publish articles|edit articles']);
}

You can add something in Laravel exception handler:

public function render($request, Exception $exception)
{
 if ($exception instanceof \Maklad\Permission\Exceptions\UnauthorizedException) {
 // Code here ...
 }

 return parent::render($request, $exception);
}

Using artisan commands

You can create a role or permission from a console with artisan commands.

php artisan permission:create-role writer

php artisan permission:create-permission 'edit articles'

When creating permissions and roles for specific guards you can specify the guard names as a second argument:

php artisan permission:create-role writer web

php artisan permission:create-permission 'edit articles' web

Unit Testing

In your application’s tests, if you are not seeding roles and permissions as part of your test setUp() then you may run into a chicken/egg situation where roles and permissions aren’t registered with the gate (because your tests create them after that gate registration is done). Working around this is simple: In your tests simply add a setUp() instruction to re-register the permissions, like this:

public function setUp()
{
 // first include all the normal setUp operations
 parent::setUp();

 // now re-register all the roles and permissions
 $this->app->make(\Maklad\Permission\PermissionRegistrar::class)->registerPermissions();
}

Database Seeding

Two notes about Database Seeding:

	It is best to flush the maklad.permission.cache before seeding, to avoid cache conflict errors. This can be done from an Artisan command (see Troubleshooting: Cache section, later) or directly in a seeder class (see example below).

	Here’s a sample seeder, which clears the cache, creates permissions, and then assigns permissions to roles:

use Illuminate\Database\Seeder;
use Maklad\Permission\Models\Role;
use Maklad\Permission\Models\Permission;

class RolesAndPermissionsSeeder extends Seeder
{
 public function run()
 {
 // Reset cached roles and permissions
 app()['cache']->forget('maklad.permission.cache');

 // create permissions
 Permission::firstOrCreate(['name' => 'edit articles']);
 Permission::firstOrCreate(['name' => 'delete articles']);
 Permission::firstOrCreate(['name' => 'publish articles']);
 Permission::firstOrCreate(['name' => 'unpublish articles']);

 // create roles and assign existing permissions
 $role = Role::firstOrCreate(['name' => 'writer']);
 $role->givePermissionTo('edit articles');
 $role->givePermissionTo('delete articles');

 $role = Role::firstOrCreate(['name' => 'admin']);
 $role->givePermissionTo(['publish articles', 'unpublish articles']);
 }
}

Extending

If you need to EXTEND the existing Role or Permission models note that:

	Your Role model needs to extend the Maklad\Permission\Models\Role model

	Your Permission model needs to extend the Maklad\Permission\Models\Permission model

If you need to extend or replace the existing Role or Permission models you just need to
keep the following things in mind:

	Your Role model needs to implement the Maklad\Permission\Contracts\Role contract

	Your Permission model needs to implement the Maklad\Permission\Contracts\Permission contract

In BOTH cases, whether extending or replacing, you will need to specify your new models in the configuration. To do this you must update the models.role and models.permission values in the configuration file after publishing the configuration with this command:

php artisan vendor:publish --provider="Maklad\Permission\PermissionServiceProvider" --tag="config"

Cache

Role and Permission data are cached to speed up performance.

When you use the supplied methods for manipulating roles and permissions, the cache is automatically reset for you:

$user->assignRole('writer');
$user->removeRole('writer');
$user->syncRoles(params);
$role->givePermissionTo('edit articles');
$role->revokePermissionTo('edit articles');
$role->syncPermissions(params);
$permission->assignRole('writer');
$permission->removeRole('writer');
$permission->syncRoles(params);

HOWEVER, if you manipulate permission/role data directly in the database instead of calling the supplied methods, then you will not see the changes reflected in the application unless you manually reset the cache.

Manual cache reset

To manually reset the cache for this package, run:

php artisan cache:forget maklad.permission.cache

Cache Identifier

Note: If you are leveraging a caching service such as redis or memcached and there are other sites running on your server, you could run into cache clashes. It is prudent to set your own cache prefix in /config/cache.php for each application uniquely. This will prevent other applications from accidentally using/changing your cached data.

Need a UI?

As we are based on laravel-permission [https://github.com/spatie/laravel-permission]. The package doesn’t come with any screens out of the box, you should build that yourself. To get started check out this extensive tutorial [https://scotch.io/tutorials/user-authorization-in-laravel-54-with-spatie-laravel-permission] by Caleb Oki [http://www.caleboki.com/].

Change log

Please see CHANGELOG for more information on what has changed recently.

Testing

composer test

Contributing

Please see CONTRIBUTING and CONDUCT for details.

Security

If you discover any security-related issues, please email dev.mostafa.maklad@gmail.com instead of using the issue tracker.

Credits

	Freek Van der Herten [https://github.com/freekmurze]

	Mostafa Maklad [https://github.com/mostafamaklad]

	All Contributors

License

The MIT License (MIT). Please see License File for more information.

Code of Conduct

1. Purpose

A primary goal of Laravel Permission Mongodb is to be inclusive to the largest number of contributors, with the most varied and diverse backgrounds possible. As such, we are committed to providing a friendly, safe and welcoming environment for all, regardless of gender, sexual orientation, ability, ethnicity, socioeconomic status, and religion (or lack thereof).

This code of conduct outlines our expectations for all those who participate in our community, as well as the consequences for unacceptable behavior.

We invite all those who participate in Laravel Permission Mongodb to help us create safe and positive experiences for everyone.

2. Open Source Citizenship

A supplemental goal of this Code of Conduct is to increase open source citizenship by encouraging participants to recognize and strengthen the relationships between our actions and their effects on our community.

Communities mirror the societies in which they exist and positive action is essential to counteract the many forms of inequality and abuses of power that exist in society.

If you see someone who is making an extra effort to ensure our community is welcoming, friendly, and encourages all participants to contribute to the fullest extent, we want to know.

3. Expected Behavior

The following behaviors are expected and requested of all community members:

	Participate in an authentic and active way. In doing so, you contribute to the health and longevity of this community.

	Exercise consideration and respect in your speech and actions.

	Attempt collaboration before conflict.

	Refrain from demeaning, discriminatory, or harassing behavior and speech.

	Be mindful of your surroundings and of your fellow participants. Alert community leaders if you notice a dangerous situation, someone in distress, or violations of this Code of Conduct, even if they seem inconsequential.

	Remember that community event venues may be shared with members of the public; please be respectful to all patrons of these locations.

4. Unacceptable Behavior

The following behaviors are considered harassment and are unacceptable within our community:

	Violence, threats of violence or violent language directed against another person.

	Sexist, racist, homophobic, transphobic, ableist or otherwise discriminatory jokes and language.

	Posting or displaying sexually explicit or violent material.

	Posting or threatening to post other people’s personally identifying information (”doxing”).

	Personal insults, particularly those related to gender, sexual orientation, race, religion, or disability.

	Inappropriate photography or recording.

	Inappropriate physical contact. You should have someone’s consent before touching them.

	Unwelcome sexual attention. This includes, sexualized comments or jokes; inappropriate touching, groping, and unwelcomed sexual advances.

	Deliberate intimidation, stalking or following (online or in person).

	Advocating for, or encouraging, any of the above behavior.

	Sustained disruption of community events, including talks and presentations.

5. Consequences of Unacceptable Behavior

Unacceptable behavior from any community member, including sponsors and those with decision-making authority, will not be tolerated.

Anyone asked to stop unacceptable behavior is expected to comply immediately.

If a community member engages in unacceptable behavior, the community organizers may take any action they deem appropriate, up to and including a temporary ban or permanent expulsion from the community without warning (and without refund in the case of a paid event).

6. Reporting Guidelines

If you are subject to or witness unacceptable behavior, or have any other concerns, please notify a community organizer as soon as possible. dev.mostafa.maklad@gmail.com.

Additionally, community organizers are available to help community members engage with local law enforcement or to otherwise help those experiencing unacceptable behavior feel safe. In the context of in-person events, organizers will also provide escorts as desired by the person experiencing distress.

7. Addressing Grievances

If you feel you have been falsely or unfairly accused of violating this Code of Conduct, you should notify Mostafamaklad with a concise description of your grievance. Your grievance will be handled in accordance with our existing governing policies.

8. Scope

We expect all community participants (contributors, paid or otherwise; sponsors; and other guests) to abide by this Code of Conduct in all community venues–online and in-person–as well as in all one-on-one communications pertaining to community business.

This code of conduct and its related procedures also applies to unacceptable behavior occurring outside the scope of community activities when such behavior has the potential to adversely affect the safety and well-being of community members.

9. Contact info

dev.mostafa.maklad@gmail.com

10. License and attribution

This Code of Conduct is distributed under a Creative Commons Attribution-ShareAlike license [http://creativecommons.org/licenses/by-sa/3.0/].

Portions of text derived from the Django Code of Conduct [https://www.djangoproject.com/conduct/] and the Geek Feminism Anti-Harassment Policy [http://geekfeminism.wikia.com/wiki/Conference_anti-harassment/Policy].

Retrieved on November 22, 2016 from http://citizencodeofconduct.org/

Contributor Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to make participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
nationality, personal appearance, race, religion, or sexual identity and
orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at dev.mostafa.maklad@gmail.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4,
available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Contributing

Contributions are welcome and will be fully credited.

We accept contributions via Pull Requests on Github [https://github.com/mostafamaklad/laravel-permission-mongodb].

Pull Requests

	PSR-2 Coding Standard [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide] - Check the code style with composer check-style and fix it with composer fix-style.

	Add tests! - Your patch won’t be accepted if it doesn’t have tests.

	Document any change in behaviour - Make sure the README.md and any other relevant documentation are kept up-to-date.

	Consider our release cycle - We try to follow SemVer v2.0.0 [http://semver.org/]. Randomly breaking public APIs is not an option.

	Create feature branches - Don’t ask us to pull from your master branch.

	One pull request per feature - If you want to do more than one thing, send multiple pull requests.

	Send coherent history - Make sure each individual commit in your pull request is meaningful. If you had to make multiple intermediate commits while developing, please squash them [http://www.git-scm.com/book/en/v2/Git-Tools-Rewriting-History#Changing-Multiple-Commit-Messages] before submitting.

Running Tests

composer test

Happy coding!

Description

Describe your changes in detail.

Motivation and context

Why is this change required? What problem does it solve?

If it fixes an open issue, please link to the issue here (if you write fixes #num
or closes #num, the issue will be automatically closed when the pull is accepted.)

How has this been tested?

Please describe in detail how you tested your changes.

Include details of your testing environment, and the tests you ran to
see how your change affects other areas of the code, etc.

Screenshots (if appropriate)

Types of changes

What types of changes does your code introduce? Put an x in all the boxes that apply:

	[] Bug fix (non-breaking change which fixes an issue)

	[] New feature (non-breaking change which adds functionality)

	[] Breaking change (fix or feature that would cause existing functionality to change)

Checklist:

Go over all the following points, and put an x in all the boxes that apply.

Please, please, please, don’t send your pull request until all of the boxes are ticked. Once your pull request is created, it will trigger a build on our continuous integration [http://www.phptherightway.com/#continuous-integration] server to make sure your tests and code style pass [https://help.github.com/articles/about-required-status-checks/].

	[] I have read the CONTRIBUTING document.

	[] My pull request addresses exactly one patch/feature.

	[] I have created a branch for this patch/feature.

	[] Each individual commit in the pull request is meaningful.

	[] I have added tests to cover my changes.

	[] If my change requires a change to the documentation, I have updated it accordingly.

If you’re unsure about any of these, don’t hesitate to ask. We’re here to help!

name: Bug report
about: Create a report to help us improve

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:

	Go to ‘…’

	Click on ‘….’

	Scroll down to ‘….’

	See error

Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

Desktop (please complete the following information):

	OS: [e.g. iOS]

	Browser [e.g. chrome, safari]

	Version [e.g. 22]

Smartphone (please complete the following information):

	Device: [e.g. iPhone6]

	OS: [e.g. iOS8.1]

	Browser [e.g. stock browser, safari]

	Version [e.g. 22]

Additional context
Add any other context about the problem here.

name: Feature request
about: Suggest an idea for this project

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Describe alternatives you’ve considered
A clear and concise description of any alternative solutions or features you’ve considered.

Additional context
Add any other context or screenshots about the feature request here.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

_static/plus.png

